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HOMOGENEOUS ADDITIVE CONGRUENCES

By M. DODSON
Department of Mathematics, University of York

(Communicated by H. Davenport, F.R.S.—Received 22 June 1966)
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An investigation of conditions under which the congruence

alx’f+..7+asx’° =0 (modp"),

where ay, ..., a, are any non-zero integers and p” is any prime power, has a primitive solution.

%
S A

=

<>5 E 1. INTRODUCTION

= In this paper we consider when, for given positive integral exponent %, the additive homo-
M eneous congruence

T & & 4 xit o da =0 (modpm), (11)
=w

where a,, ..., a, are arbitrary non-zero integers, has a primitive solution, that is a solution
with the variables x;, ..., x, integral and not all divisible by p, for every prime power p".

[ Note added in proof, 10 November 1966.] Since this paper was submitted I have received a copy of K. Norton,
On homogeneous diagonal congruences of odd degree, Technical Report No. 16, University of Illinois, Urbana,
Illinois, (1966), the results of which overlap a little with those of the present paper. In particular Norton
shows that I'*(k) > 2k+1 for all £ > 2, and for all odd % > 3, he improves the estimate (1-4) of Chowla &
Shimura 1963, Theorem A) for T'*(%).
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164 M. DODSON

"This question was studied in a paper by Davenport & Lewis (1963) on additive homogeneous
equations. In their investigation they were led to consider the self-contained, purely
arithmetical problem of determining the least value, which they defined to be I'*(%), of s,
such that the congruence (1-1) has a primitive solution for every prime power p*. In some
respects the function I'*(£) is similar to the function I'(£), introduced by Hardy & Littlewood
(1928) in their study of Waring’s problem. I'(£) can be shown to be the least value of s for
which the congruence W fxh =N (modp) (1-2)
has a primitive solution for every prime power p” and every integer N, and some of the
techniques used in estimating I'(£) are readily adapted to estimating I'*(%).

'The main object of Davenport & Lewis’s paper was to establish the following sharp upper
bound for I'*(£): for all £ we have

*(k) < k241, (1-3)

and here there is equality whenever £+ 1 is a prime. They also deduced from this and other
known results that

T#(3) =7, D*(4) =17, [*(5) =16, 1*(6)=37.

Using results established in the present paper I have been able to show that I'*(7) = 22
and I'*(9) = 37, but have not yet been able to determine the value of ['*(8).

When £ is odd, box arguments provide an effective means of estimating 1'*(£), and using
these, Chowla & Shimura (1963) showed that for all odd £ > £ (¢)

I'*(k) < (2/(log 2) +¢) klog £, (1-4)
where ¢ is any positive number. They also proved that for an infinity of odd £
I'*(k) > (klogk)/(log 2). (1-5)

In this paper we are concerned with obtaining estimates for I'*(£) when £4-1 is not a
prime. One of the main difficulties, which does not arise in the case of Hardy & Littlewood’s
I'(k), is the arbitrariness of the coeflicients 4, ..., a,. This makes it very difficult to compute
I'* (k) for a particular value of £, even if £ is fairly small, unless there is a general argument
which happens to give the best possible upper bound for I'*(£). Our first estimate is an
improvement of (1-:3) when £+1 is not a prime; we prove

THEOREM 5-2-1. Suppose k41 is composite. Then
* (k) < $2k%24-1. (1-6)

The constant £2 is probably capable of improvement, but to effect this we should have to
know more about the value of I'*(8). However, if we restrict the values of £ slightly, we can
obtain a sharp upper bound for I'*(k) when £+-1 is composite. We prove

THEOREM 5:2-2. Suppose k+ 1 is composite and k == 8 and k == 32. Then
2
& 112 - .
T (k) < 3k (1+1+J(1+4k))+1’ (17)
and there is equality here when k = p(p—1) for some prime p, in which case the inequality becomes

T (k) = B2+ 1/p) + 1. (1:8)


http://rsta.royalsocietypublishing.org/

s |
PN

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

HOMOGENEOUS ADDITIVE CONGRUENCES 165

By further restricting &, we obtain more sharp estimates of this nature, but the results only
hold when £ is very large and are not of any practical use in evaluating I'* (k) for numerical
values of k. When £ is odd, we have the effective estimate (1-4) for I'* (£), and when £ is even,
we show that I'*(£) is of lower order than £? infinitely often in

THEOREM 5-4-2. There exists an infinity of even k _for which
I'* (k) < 12(log k)2 k. ’ (1-9)
As regards a lower bound for I'* (), we prove

THEOREM 5:3-1. For all k

I*(k) = k+1. (1-10)
This lower bound is probably not the best possible and we conjecture that
ES
li_«m F_yﬁ = 0. (1. 1 1)

k—>©
The problem of establishing a good lower bound seems a difficult one and may be related

to the same problem for I'(£), about which little is known beyond I'(k) > 3 for all £ > 1.
The solubility of the congruence ‘

a, x54-...+a,xE=0 (modp"), (1-12)

where p is a prime and «,, ..., 4, are arbitrary integers not divisible by p, for every positive
integer n, plays an important part in determining the solubility of the more general con-
gruence (1-1). In view of this, we introduce the function y* (%, "), which we define to be the
least value of s such that the congruence (1-12) has a primitive solution for the particular
prime p, and for the positive integer n. Section 2 of this paper is devoted to estimating
y*(k,p) for all primes p and §3 to estimating y*(k,p") in the case when p—1 does not
divide £.

It is convenient in our discussion of I'*(k) to introduce the auxiliary function I'*(k, p),
which is defined to be the least value of s for which the congruence

a xf+...+axk=0 (modp),

where ay, ..., a, are arbitrary non-zero integers, has a primitive solution for every positive
integer z, for the particular prime p. It follows from this definition that

I'*(k) = maximum I'*(%, p). (1-13)

(primes p)

We investigate ['* (£, p) in §4 and we use the results obtained there to establish our results
for I'*(k) in § 5.

2. CONGRUENCES TO A PRIME MODULUS
2:1. Introduction

We have defined y* (%, p) as the least positive integer s with the following property: if
a, ..., a, are any integers prime to p, then the congruence

a xf+...+a,xF=0 (modp) (2:1-1)

21-2
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166 M. DODSON

has a primitive solution, that is a solution with not all of the variables x,, ..., x, divisible by p.
The object of this section is to estimate, or evaluate if possible, the number y* (£, p).

Itis well known that the non-zero residue classes (mod p) form a cyclic group of orderp—1.
From this it follows that the values assumed by &%, for given £ and arbitrary x, are the same
as the values assumed by x4, where, as always, d = (k,p—1). Hence

Yk, p) = y*(d, p), (2:1-2)
and it therefore suffices to investigate y* (d, p) when p— 1 is any multiple of d. The case d =
is trivial, and plainly y(1,p) = 2. (2:1-3)

For the remainder of this section, we suppose that p > 2, since for p = 2 the only possibility
is d = 1, covered by (2-1-3).

The case d = p—1, although not so trivial, is also somewhat special, since the only values
(mod p) assumed by x¢ are 0 and 1. We shall easily prove (in lemma 2-3-1) that

y*(p—1,p) = - (2:1-4)
We shall use several different methods of investigation. Some of them extend naturally

to the investigation of y*(k, p") when n > 1, and we may quote here from the work of § 3,
where this question is discussed.

2:2. The case when 3(p—1) is a multiple of d
Here a simple box argument gives a good upper bound for y*(d, p) which is best possible
in some cases. We can generalize the argument to the modulus p”, and accordingly this
argument appears again in § 3, but is given there in a slightly different form which is capable
of being generalized further. Nevertheless, as it is so short, we give it here too, in its simpler
form.

LemMma 2-2-1. If L(p—1) ts a multiple of d, then

y*(d,p) < [(logp)/(log 2)] +1. (2-21)
Here there is equality if d = $(p—1) and we have
y*(3(p—1),p) = [(logp)/(log 2)] +1. (2-22)

Proof. The condition that 4(p—1) is divisible by d is sufficient (and also necessary) for
—1 to be a dth power residue (mod p) ; this follows from the fact that the index of —1 relative
to any primitive root for the prime pis £(p—1). Thus the congruence (2-1-1), with 4 in place
of k, will be non-trivially soluble provided that the congruence

ay,+...+a,y, =0 (modp)

is soluble non-trivially with each y; = 0, 1 or — 1. This will be the case if the values (mod p)
assumed by a, ;... +a, t,, for each {; = 0 or 1, are not all mutually distinct. The number of
values is 2%, and if 2° > p, then the values cannot be all distinct (mod p). Hence, for the con-
gruence (2-1+1) to have a primitive solution, it is enough if s > (log p)/(log 2), and this gives
the result expressed in (2:2-1).

Ifd = }(p—1), the only values assumed by ¢ (mod p) are 0, 1, — 1. Hence in this case it is
not only sufficient but also necessary that two of the values assumed by a4+ ...+ a1,
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HOMOGENEOUS ADDITIVE CONGRUENCES 167

should be congruent (mod p). If we take a; = 2¢-1, the values are the integers from 0 to 29 —1
inclusive, and these are mutually incongruent (modp) if p < 2¢. It follows that the con-
gruence is not always soluble if s = [(logp)/(log2)], and this (together with the previous
result) implies (2-2-2).
' 2-3. The addition of residue classes

A natural approach to congruences of an additive type is through general theorems on
the addition of residue classes (mod p). The simplest such theorem was given by Cauchy in
1812, but was overlooked until it had been rediscovered by Davenport (1935,1947). Itstates
that if a,, ..., q,, are distinct (modp) and if b,,...,b, are also distinct (modp), then the
number of distinct residue classes of the form ;- b; is at least min (m+n—1, p). Using this
we prove:

Lemma 2:3-1. We have
r*(d,p) < d+1 (2-3-1)
and y*(p—1,p) = . (2:3-2)
Proof. The number of distinct values (mod p) assumed by x4 for x = 0 (modp) is (p—1)/d,
this being a consequence of the fact that the non-zero residues (mod p) form a cyclic group.
Hence, for a # 0 (modp), the number of distinct residue classes representable as ax? is
(p—1)/d+1. By induction on 7, using the Cauchy-Davenport theorem, the number of
residue classes representable as @, ¥{+ ... +a,x¢ is at least min (r(p—1)/d+1,p). If we take
r =d, we get every residue class representable in this way. Hence we can solve the

congruence
8 a x{+... tax8=—a,,, (modp),

and this proves that y*(d, p) < d-+1.
In particular, we have y*(p—1, p) < p, and since the congruence

71 40l =0 (modp)

is obviously insoluble except trivially, the complementary inequality also holds, whence
(2-3-2).

This result was proved by Davenport & Lewis (1963) in their lemma 1 and they noted
thatit had also been proved by Schwarz (1948). These proofs, however, depend on a property
of polynomial identities (mod p).

Most of the work done recently on the addition of residue classes is aimed at greater
generality rather than greater precision, and is therefore useless for the present purpose.
There is, however, one important case in which the result has been improved upon, namely
by Chowla, Mann & Straus (1959). They proved that if d < }(p—1) and n > }(d+1), then
every residue class (mod p) is representable as

ay ¥+ ...+ a, x4,

assumlng that all the coeflicients are prime to p. This lmphes immediately, in the same way
as in the proof of the preceding lemma:

Lemma 2-3-2. If d < 3 (p—1) then
r*d.p) < [E(d+4)]. (2-33)
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168 M. DODSON

The results (2-3-1) and (2-3-3) have the merit of being simple and of being effective in
numerical instances. In the remainder of this chapter we shall obtain results which show
that y*(d, p) = o(d) for d < p—1; these results are also effective in the sense of being explicit,
but they involve fairly large numerical constants and are therefore less useful in particular
cases.

2-4. Exponential sums

- The use of exponential sums provides, as is well known, a powerful method of attack upon
problems of an additive nature. For given p and d, we define

S0) =3 o,(bx), (2:41)

where ¢, (y) = e?71¢/¢, This sum can be expressed in terms of the Gaussian sums corresponding
to the Dirichlet characters y (mod p) which satisfy y¢ = y,, where y, denotes the principal
character. There are exactly d such characters, and if y is one of them other than the
principal character, the Gaussian sum 7(y) is defined by

=3 1) o) (242)

For such characters, we have thatify is a dth power residue (mod p), then y(y) = 1, whence
the sum of these characters is d— 1, while if y is not a dth power residue, the characters y(y)
form a geometric progression whose sum is —1. Thus the number of solutions of

¥ =y (modp)
can be expressed as 1+ 3> x(y),
X

where the summation is extended over the above mentioned d— 1 characters, and we have

SG) =" 01+ S oty

p—1
=2 2 x(¥) &(%y)
X y=1
=27%(0) (%) (2:4-3)
X
It is well known (Landau 1947; Satz 308) that
(x| =# (2+4+4)
for any non-principal character y.
Using these results we prove
Lemma 2-4-1. We have
3 if p>d (2:4:5)
y¥(d,p) < ) 2 4
[(2log2d)/(log 2)]+1 if p> 2d° (2-4+6)

Proof. The number of solutions of the congruence

a X+ ... +a,_ x¢+a,=0 (modp)
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HOMOGENEOUS ADDITIVE CONGRUENCES 169
with 0 <x; <p (j=1,...,5—1) is
NE S S

-1
PUE S S gtk s a) = S Slta) - Slia ) o).

t=0 x1=0 x5 -1=0

By (2-4-3), the second term is

ST S S ) oo Koty ey(02) T8 e T ()

=1 x1 Xs—1

where y,, ..., ¥,_, run independently through the d—1 non-principal characters satisfying
X% =xo- If ¥y ... Xs—1 = X0 We have

Z X_l Xs—l(t) e‘b(t{ls) = 1:__211 ep(tas) =—1,

and if y, ... ¥,_; == ¥, We have

Zl X1 -ee Ns-1(2) €p(tas) = xy - Xo 1(@) 7(x Xs—l)

Using (2-4-4), we deduce that the absolute value of the second term is at most
pHd—1) i
Hence the congruence is soluble provided
P =1y e <
that is, provided (d—1)s"1 < ps-1

This condition is satisfied with s = 3 if p > d*, from which it follows that y*(d,p) < 3 if
p > d*. This result has already been proved by I. Chowla (1937, theorem 1).
Now suppose only that p > 2d2. Then the condition is satisfied if
-1~ p%s—l’

s log p—logd
~ Llogp—logd"

that is, if
For fixed d and p > 42, the right-hand side increases as p decreases. Hence it will suffice if

log 2d?—logd  2log2d
= Yog2d?—logd ~ log2 °

This proves (2:4-6).

2:5. The case d* < p < 2d*

It will be seen that the result of the preceding section depends on p being appreciably
greater than d2, and that the method employed there rapidly loses its effectiveness if we
allow p to approach d2. The underlying reason for this is that expressing S(b) as a sum of
d—1 terms of the form y(b)7(y), each of absolute value p?, is no longer useful. We now
modify the approach, using ideas suggested by the work of I. Chowla (1943) on Waring’s
problem, so as to deal with the range d% < p < 242, for which we still get a satisfactory
estimate for y*(d, p). The condition p < 2d? will not actually be used here.
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170 M. DODSON

The function y(d, p) was introduced by I. Chowla (1943) in his work on Waring’s problem

and is defined as the least positive integer  for which the congruence
¥+...4+x¢=N (modp) (2-5°1)
is soluble for all integers N.

We recall that the p—1 non-zero residue classes (mod p) fall into 4 disjoint equivalence
classes, one such class consisting of the dth power residues and the others being the various
classes of dth power non-residues. We denote by > * a summation in which 4 runs through

b

a set of representatives, one from each of the d classes. Now we prove a series of results
which enable us to estimate y*(d, p) when d? < p < 242

LemMA 2-5-1.
2*[S(B)|* =d(d—1)p. (2:5-2)
b
p—1 =1 p—1 p—1
Proof. We have SI8@2P=3 3 2 e(t(x?—y?))
=0 t=0 x=0 y=0
:pM,

where M denotes the number of solutions of the congruence x? = y? (mod p). For given x,
there is one solution if ¥ = 0 (mod p) and there are d solutions if x #= 0 (mod p). Hence
M =1+ (p—1)d. Since §(0) = p, we obtain

5SS = p+ (p—1) dh—p? — (d—1) p(p—1).

The lemma follows since S(¢) has the same value for each of the (p—1)/d values of ¢ which
belong to the same one of the d classes.

LEMMA 2:5-2. Suppose that x$+ ...+ x¢ does not represent every residue class (mod p). Then there
exists some ¢, prime to p, such that 1S(c)| > p(1—L) (2:53)

where L = (log p)[r, and this implies that

|S(me)| > p(1—m?L) (2-54)
Jfor every non-zero integer m.

Proof. Suppose x¢4-...+x¢ %= N (mod p). Then
pfgww%@ﬂwza
Hence, separating out the term ¢ = 0, we get
EF@%&%M:—W.
It follows that there exists an integer ¢ which is not divisible by p, such that

|M®V>pfl>pﬁh

1 1
whence S()] > pexp (—5) = p (1—57),
which is (2:5-3).
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HOMOGENEOUS ADDITIVE CONGRUENCES 171

Now suppose that ¢ has this property. Then for some real 6,

'S e, (exi—0) = [S(6)] > p(1—L).

x=0
This implics that s cos (2n/p) (exi—0) > p(1—1L),
x=0
whence ’S sin? (nfp) (cx/—0) < LpL.
x=0

Since [sinm@| < |msin @], we deduce that
Z sin? (mm/p) (cx?—0) < gm?pL,

-1
whence pz cos (2mm[p) (cx¢—0) > p(1 —m?3L),
x=0
and this gives (2-5-4).
LemMA 2-5-3. Suppose that 2 is a d-th power residue (mod p). Then

7(d,p) < [(logp)/(log 2)]+1. (2:55)

Proof. We have to prove that every integer N is congruent (modp) to a sum of at most
[(logp)/(log 2)]1+1 dth powers. Without loss of generality we can suppose 0< N<p,and
then we can express N as N = ay+2a,+...+2Ma,

where each ¢; (1=1,...,A—1) is 0 or 1 and g, = 1. Plainly 2* < p. Now each term is a dth
power, and so N is congruent to a sum of at most (£+ 1) dth powers, which gives the result.

LemmA 2-5-4. If d? < p < 2d2, then

y(d,p) <[8logp]+1. (2:5°6)

Proof. 1t suffices to prove that the congruence (2:5-1) is soluble for » = [8log p]+1. We
suppose the contrary and obtain a contradiction. By lemma 2-5-2, there exists an integer ¢,

prime to p, such that 1S()| > p(1—L), [8(2)| > p(1—4L),

where L = (logp)/r < 3.
If 2 is not a dth power residue (modp), we can take ¢ and 2¢ as representatives of two
different classes in the sum of lemma 2-5-1. This gives

PPA—L)*+p*(1—4L)> < pd(d—1) < p?,
whereas on the contrary, since L < %, we have
(1—L)2+(1—4L)? > 43+1 > 1.

Hence 2 must be a dth power residue (modp), and now Lemma 2-5-3 implies that the
congruence (2-5+1) is soluble with r satisfying

r < [(logp)/(log 2)]+1.

20 VoL. 261, A.
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172 M. DODSON

This clearly contradicts the assumption that the congruence was insoluble for

) r=[8logp]+1,
and hence gives us the result.

LEmMA 2-5-5. If d? < p < 2d2, then
y¥*(d,p) < [12logp]+1. (2-5-6a)
Proof The total number of solutions of the congruence
ayxf+...+a,xf=0 (modp), (2:5°7)
with 0 <x; < p (j=1,...,5) is
S Slta) .. S(ta).
Suppose the congruence (2:5-7) has only the trivial solution for s = [12logp]+1, so that
the total number of solutions must be 1. It follows that we get, on separating out the term

t =0, i
3 S(ta) ... S(ia) = p—p-

p-1
Hence > |S(tay) ... S(ta,)| = p*—p,

i=1
and it follows that there exists an integer ¢, prime to p, for which

s—1
1S(tay) ... S(ia,)| >%:—f > pe-l,

Suppose, as we may, that  |S(ta,)| = |S(tay)| = ... = |S(ta,)].

Then |S(tay)| > pr-1s>p (l—li)f—p) .
Further, since |S(fa,)| < p, we have \

[S(tag)| > po-2169 > p (1-18F)
and so on. Generally, provided j < s,

1S(ta,)| > p (1-;—%).

Suppose that we can choose 7 to satisfy
s—r+1 > Zlogp. (2-5-8)

Then |$(ta;)| > 3p forj =1, ...,r. If aj, ..., a, did not belong to the same equivalence class
(mod p), we could take two of them as values of 4 in the sum of lemma 2-5-1, giving
(3£)*+ (3p) < pd(d—1) < p?
which is a contradiction.
Hence, provided r and s satisfy the above condition, ay, ..., a, all belong to the same
equivalence class and we can write the congruence (2-5:7) as

a(yi+...+yH) 4 ... +a,yi =0 (modp).
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We have supposed this congruence to have only the trivial solution for s = [12log p]+1.
Hence the congruence 4, (gt oo y?) +a,=0 (modp) (2-59)

is a fortior: insoluble. But since s = [12log p] 41 enables us to take r = [8log p]+1 and still
have r satisfying (2-5-8), the congruence (2:5-9) is soluble by lemma 2-5-4, and so we have
a contradiction. This gives us the result.

2:6. The case p < d?

We first develop a more elaborate version of the preceding argument and obtain an
estimate for y*(d, p) which is satisfactory if p is not much less than d2. The following lemma
is due to Davenport. The idea behind it is not new and is used in Landau (1947) in Satz 300,
which is due to Hardy & Littlewood.

LemmA 2:6-1. Suppose that none of the integers 2,3, ..., M (where 2 < M < p) is a d-th power
residue (mod p). Let the number of distinct equivalence classes to which 1,2, ..., M belong be h. Then
every integer up to and including M, is representable as a sum of h d-th powers (mod p).

Proof. Let C, C,, ..., C, be the h equivalence classes to which 1,2, ..., M belong, and let 4,
denote the greatest of these integers in the class G;. We arrange C;, C,, ..., C, in increasing
order of by, b,, ..., b,. Then, by hypothesis, C| contains 1 and no other integer up to M. Let
n(C) denote the number of dth powers needed to represent an element of the class C (it is
obviously the same for all elements in the class).

If b; < M, let b;+1 belong to the class C;. Then by the above definitions we have j > .
Since 1 is a dth power, it follows that n(C;) < »(C;) + 1. Starting with ¢ = 1 and »(C,) = 1,
we obtain in this way a sequence of integers

1=Z‘1<i2<i3<-..,

such that n(C;) < g. Since there are at most 4 classes, the sequence must terminate after at
most 4 terms, and it can only terminate at i, when 4, = M. Then M belongs to G, and
n(G,) < g < h, whence the result.

Lemma 2:6-2. If one of 2,3, ..., M is a d-th power residue (mod p), then
log p log p "
y(d,p) < max{z (@+ 1), M(WJr 1)} (2:6+1)
Proof. Suppose m > 2 is a dth power residue (mod p). Reasoning as in lemma 2-5-3, but

with m instead of 2 and therefore with 0 < ¢; < m, we see that every integer N is repre-
sentable as a sum of (m—1) (A4-1) dth powers (mod p), where m* < p. Now

(m—1) (h+1) <m(%’gg§l+1),

and since the function x/(log x) increases with x for x > ¢, every integer N is representable
as a sum of at most
logp logp

dth powers (mod p). This proves the lemma.
The next lemma is due to Davenport and replaces a less effective result of I. Chowla
(1943, lemma 4 (i1)).

22-2
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Lemma 2-6-3. If every positive integer up to and including M is representable as a sum of h d-th
powers (mod p), where M = 2 and h = 2, then

7(d, p) < 2h\+1og Hidog M), (2:6-2)

Proof. We have to show that any integer N (0<<XN<p) is congruent (mod p) to a sum of

at most 91 +1(log p)/(log M)1

dth powers. We again express N as
| N=ay+a,M+...4a;, M,

where 0 <a; < Mfori=1,...,j—1 and 0 < a; < M. Plainly M/ < p.

Now M and a; < M are representable as sums of at most £ dth powers (mod p) by hypo-
thesis. It is clear that M?is therefore representable as a sum of 47 dth powers (mod p), and
hence N is representable as a sum of at most

bR R <2 p
dth powers (mod p). Since j < [(logp)/(log M)], the lemma follows.
LEMMA 2-6-4. Suppose p < d? and put d*[p = p* (0 <k < 1), and (log 2)/(logp) = 0. Then

7(d, p) < 4(logp) (p'+1)°+1, (2:6-3)

where J = He+J(2+8(k+9))}. (2:6-4)

Proof. We assume that y(d,p) = 4 (logp) (p7+1)2-+1 (2:6+5)

and obtain a contradiction. Let  r = [4M?2logp]+1, (2:6-6)

where M=[p']+1. (2:6-7)
Then r < 4(logp) (p’+1)2+1 < y(d, p)

by our assumption (2-6-5), whence, from the definition of y(d, p), the sum x{+ ... +x¢ does
not represent every residue class (mod p). Hence by Lemma 2-5-2, there exists an integer c,

prime to p, such that 1S(me)| > p(1—m2(logp)/r),
for all non-zero integers m.
Let m run through the values 1, 2, ..., M (=[p’]+1). Then, by (2-6-6),

|$(me)| > ¢p

for m=1,2,...,M, and it follows from lemma 2-5-1 that /%, the number of equivalence
classes into which these m fall, satisfies

h(ip)? < pd(d—1) < pd?,
whence h < 2d?%|p = 2p* = prro.
If one of 2, 3, ..., M is a dth power residue (mod p), then lemma 2-6-2 implies

y(d, p) < max {2 (%—i— 1) , M (lf)oggj@ + 1)}
logp

< (74 1) (josB+1),
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which contradicts (2-6-5) since |
logp 7

If none of 2, 3, ..., M is a dth power residue (mod p), then lemma 2-6-1 applies and every
integer up to and including M is a sum of % dth powers (mod p), where 4 > 2. In this case
lemma 2-6-3 implies

,},(d’p) < 2h1+[(log[7)/(log M)l < 2/11+(1/J) < 4PK+(K+8)/J — 4p2J,
whence y(d,p) < 4(logp) (441,
which again contradicts (2:6-5), and the lemma follows.
LemMmA 2-6-5. Suppose p << d?. Then we have, in the notation of lemma 2-6-4,
y*(d,5) < 12(&%[p) (logp) (4 +1)% (2:6:8)
Proof. Suppose the congruence
a x§+...+axi=0 (modp)

has only the trivial solution. Proceeding as in the proof of lemma 2-5-5, we can suppose that
there is some ¢, prime to p, such that

1 .
lS(mj)l>‘b(l_sfjg£)1) for j=1,...s.

Let r satisfy s—r+1 > 4logp. Then |S(ca;)| > §p for j=1,...,7, and it follows from
lemma 2-5-1, as in the proof of the preceding lemma, that 4, the number of distinct
equivalence classes to which a, ..., a, belong, satisfies 42 < p**9. It follows from Dirichlet’s
box argument that there is some class which contains at least R of 4, ..., a,, where

R = r[pe+s.

Suppose, as we may, that a,,...,a, belong to this class. Then, since by hypothesis the
congruence a,(x¢+4...+af)+a, =0 (modp)
is insoluble, it follows from lemma 2:-6-4 that

R < 4logp(p/+1)241.
Thus we have r<<4logp(p’+1)2p 04 pe+o,
Hence we can satisfy the condition s—r-+1 > 4log p, and so reach a contradiction, provided
s> 4logp(p’+1)2p<+o+pc+ét-4logp—1.
It follows from the definition of y*(d, p) that
7¥(d,p) < 4logp(p'+1)2p2(1+3),

whence (2-6-8), since p° = 2 and p* = d?/p.
If the estimate of this lemma is expressed as a power of d, the exponent for large d is

3+ J{k?+8(k+98)}
14« ’
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Here 0(= (log 2)/(log p)) is small when p is large and hence the exponentis small if kis small,
that is, if p is not much less than d2. Unfortunately the exponent increases rapidly with «,
and (if weignore §) becomes 1 whenx = 2—%,/33 = 0-085 ..., corresponding to d being about
%32, However, there is a result, which we prove in a more general context in the next
section, which holds in the case p < d? and which becomes more effective as p decreases.
We quote from lemma 3-3-3 with 7 = 0:

LeMMA 2-6-6. Suppose that 1 < d < p—1 and write t = (p—1)/d. Let
r = [(logpt)/(log 4)] +2. (2:6:9)
Then yE(d, p) < 1?41 (2:6-10)
This result is plainly of no use unless ¢ < d, thatis unless p < d2. Thus it is to be compared
with (2-6-8). For large p, the exponents of p arising in the two results are equal if, ignoring
8, 3k-+1./(k248k) = L(1—«x), that is if x = {%, corresponding to d = p*1*% = p**. For
small d, (2-6-8) is the better of these two estimates, while for large ¢, (2-6-10) is more effective.
for any positive ¢. We obtain this result more precisely in
Lemma 2:6:7. If 1 < d < p—1, then
y*(d,p) < 12(logd)*d>. (2:6-11)

Proof. We need only to consider the case p < d?, since otherwise the results of lemmas
2-4-1 and 2-5+5 are available and are much more effective. Also, we can suppose d > 2%,
since otherwise the estimate [(d+4)] (lemma 2-3-2) is sharper.

By lemma 2-6-5, we have

y*(d,p) < 12(logp) (d%[p) (p'+1)%

d> log2
h —=pF = and J = }(k*+ {2+8(k+0)}),
where p p logp 4( '\/{ ( )})
and by Lemma 2-6:6 we have y¥*(d, p) < 12+,
where t= ‘b—zl >1 and 7r=[(logpt)/(log4)]+2.

Case 1. Suppose k < i%. Then 4J = k+ J{c*+8(k+0)}
< 75 +/(333+89)
< g+10.
Also we have, from lemma 2-6-5 and since p = d?(+x),
v*(d,p) < 12(logp) (p’+1)*d%p
< 12(log p) (p#+E8 4 1)2q2/1+K),
< 12 (logp) (L-p=5)2pa+its 2o
< 12(1+p~4)22(log d) pit? d¥e-+100/1+x)
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since p < d2. Further, since we can take d > 2% and since d < p—1 and 4 divides p—1, we
can take p > 2% and logd > 16, from which it follows that

Y¥(d, p) < 12(1+2-5)227+r (log d)?2 gA¢+ 10011+
< 12(log d)? A +100/(L+x)
< 12(log d)%d¥,
since £(4+10«)/(1+«) is an increasing function of « for all x > —1.
Case 2. Suppose k > . Then we have

tzl’;1 <§ = d0-90+0 < g% and  pt < dB,

whence log pt < 3log d, which gives
- r< (logpt)/(log4)+2 < (2.17) log d+2.
Hence using the inequality logd > 16, we obtain
r2t4+r < 12(log d)%d®.
This completes the proof, since by lemma 2:6-6
y¥(d, p) < 1%+,

It will be seen that to improve the present estimate for y*(d, p) the crucial results are the
estimate for y(d, p) in lemma 2-6-4 and the estimate for y*(d,p) in lemma 2-6-6. Any esti-
mate which is sharper than these will immediately give a better estimate for y*(d, p). Now
I. Chowla’s work (1943, theorem 7, with 2 < p < 3) tells us that if d¥ < p < d%, then

Y(dyp) < d§+0(1/10glogd),

for all sufficiently large d (<p—1). If we use this bound instead of (2-6-3), we can save
roughly % instead of } in the exponent of 4 in the estimate for y*(d, p) for large d, and we get

7* (d, ﬁ) < d%+0(1/log loga),

However, this result is not easily made explicit and for this reason we do not take advantage
of it.

When ¢( = (p—1)/d) is composite, there is quite a good estimate for y*(d, p) which saves
a }in the exponent of d. This case is considered more generally at the end of the next section
and we quote the result (3-3-5) obtained there with 7 = 0: if ¢ is composite, then

v*(dp) (=y*(k,p)) < 28+,

where t = (p—1)/d and r = [(log pt)/(log 4)] + 2.

Now we can take d > p¥, since otherwise, from lemmas 2-4-1 and 2-5-5, we get

y*(d,p) = O(logd).

Hence we can take ¢ < p* < d, from which it follows that

7’*(‘1,]7) = 0((10gd)2d“17) < d%+e‘
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Also, when ¢ = 2, d = 4(p—1) and lemma 2-2-1 implies that y*(d, p) = O(logd). There-
fore, to improve the estimate for y*(d, p) given in lemma 2-6-7, it suffices to consider only
the case when ¢ is an odd prime greater than 4%,

Let I'(d, p) be the least number of dth powers whose sum represents non-trivially every
residue class (modp). Then it is clear that y(d,p) < I'(d,p). Heilbronn (1964, p. 5) has
conjectured that given ¢ > 0, I'(d, p) = O(d°) for ¢ sufficiently large, or at least, if ¢ > 2, then
I'(d,p) = O(d*). If the stronger conjecture could be established, it is possible to show, by
replacing ¢ in lemma 2-6-6 by I'(d, p), which we may, that y*(d, p) = O(d¢) for d sufficiently
large, while if the second could be established, we can get, in the same way, that

y¥(d,p) = O(dt*e).
S.Chowla (1963, p. 62) has made the weaker conjecture that, for 4 sufficiently large,
0(d) < d**¢, where ¢ is any positive number and where (d) is defined to be the least 7 such
that the congruence M4 ... +xi=0 (modp) (2-6-12)

has a non-trivial solution. If this conjecture could be proved, we could replace ¢ by 0(d) in
§3-3 and lemma 2-6-6 would then give
y¥(d, p) < 1?0(d)+r= 0(d**).

When d < p*, it follows from lemma 2:4-1 (with a; = ... = a, = 1) and lemma 2-5-4 that
0(d) = O(logd). Also, if ¢ is composite, then in a similar way to the discussion of y*(k, p7+1)
in §3-3 below, the congruence (2:6-12) has a non-trivial solution with 7 < %, Thus, if ¢ is
composite, 0(d) < ¢*, and further if d > p*, we have 6(d) < d*. Also,whent = 2,d = }(p—1)
and plainly #(d) = 2. Hence, when ¢ is not an odd prime greater than ¢%, S. Chowla’s con-
jecture holds, and it follows that to effect an improvement on our present estimate for
y*(d, p), this conjecture needs only to be proved when ¢ is a large prime.

3. CONGRUENCES TO AN ODD PRIME POWER MODULUS
3-1. Introduction
In this section we investigate when the more general congruence
a, x5+...+axk=0 (modp), (3-1-1)

where pis an odd prime and 4y, ..., a, are arbitrary integers not divisible by p, has a primitive
solution for every positive integer n. We define y* (£, p*) as the least positive integer s such
that if a,, ...,a, are any integers prime to p, then the congruence (3-1-1) has a primitive
solution for the particular prime power p*. This is equivalent to asserting thatif's = y* (£, p")
for all n > 1, then the equation a, 5+ ... 44, xf = 0 has a non-trivial solution in the field of
p-adic numbers, but we make no real use of this interpretation.

It is appropriate to express the positive integer £, for any given prime p, as

k= prdk,, (3-1-2)
where p7 (1=>0) is the exact power of p which divides £ and where d = (£, p—1), as always.
Thus we have (ky, p) = 1 and (ky, (p—1)/d) = 1. As usual in work on Waring’s problem we
define y as follows: 1 if p> 2,

y:{7+2 it p=2.
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It is well known (see, for example, Vinogradov (1953), chapter 2, lemma 8) that if the
congruence x* = a (mod p?) is soluble with x prime to p, then so is the congruence

¥ =a (modp")

for every n = 1. It follows that in order to estimate y* (£, p*) for every n, it suffices to estimate
y*(k, p7), which is the least s such that the congruence
a xf+...+a,xf =0 (modp7) (3-1-3)
has a primitive solution.
"The result (2-1-2) extends easily to odd prime power moduli and takes the form

y¥(RpY) = y*(pTd, pTH).
Thus it would be possible to replace £ by p7d, just as £ was replaced by ¢ in §2 in the case
7 = 0. But when 7 > 0 there is no appreciable gain from doing so, and hence we retain £ in
this section. Also, from henceforth in this section we shall take p to be an odd prime such
that p—1 does not divide £ (i.e. d < p—1) and in fact the results of this section do not hold
in the excluded cases.

3:2. The case when $(p—1) is a multiple of d
In this case there is a simple box argument which is very effective, and which we have
already used in lemma 2-2-1, in a version specialized to congruences to the modulus p.
The estimate for y*(k,p7*!) can be obtained using this argument, in an identical way to
lemma 2-2-1, except that the congruences considered here are to the modulus p7+1. However,
we shall give a slightly different approach which is capable of being generalized in a useful
way.

Lemma 3-2-1. If 3(p—1) is a multiple of d, then

* T+1 T—I—l)logp:' .9.
rkpm) < [ R . (3:21)
Moreover, there is equality here when d = L (p—1) and we then have
* reny [ (TH1) log])] 9.
ke = [R5 41 (3-2:2)

Proof. The condition that 1(p—1) is a multiple of d is equivalent to — 1 being a kth power
residue (mod p7+1); this is a consequence of the fact that the index of —1 relative to any
primitive root (modp7*1)is (p—1) p".

Now consider all the 25 possible sums of coeflicients (with distinct suffices):

0,a,a;+a;,...,a,+...+a,

where a,, ..., a, are all prime to p. If we take s > (74-1) (logp)/(log 2), so that 25 > p7+1,
there must be two sums which are mutually congruent (modp7+1). On removing any
common elements, we obtain two disjoint sets of coefficients, 4, ...,q, and a,, ..., q, say,
whose sums are congruent (modp”*!). On taking x, = 1 (mod p’“) fori=1,...,7r and
xf=—1 (modp™*!) fori=r+1,...,nand x; = 0 for ¢ > n, we get a primitive solution of the
congruence (3-1-3) and the estimate (3-2-1) follows from the definition of y* (k, p7+1).

23 Vor. 261. A.
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If d = {(p—1), the only values assumed by x* (mod p7*!) are 0,1 and —1. Also the only
values assumed by the form w2k 25k

with not all of the variébles ¥y, ..., X, divisible by p, are the integers +-1, 42, ..., 4-2¢. Thus
if 29 < p7*1, the congruence (3-1-3) does not have a primitive solution when the coefficients
are ¢; = 27! (i=1,...,s5). Hence, by the definition of y*(£, p7*1), we have

(7+1)log£

%k 7+1

b

and this result together with (3-2-1) implies (3-2-2).

We note that if £ is odd, then d necessarily divides 3(p—1) and lemma 3-2-1 holds for all
odd primes p.

3-3. A more general combinatorial method

The preceding argument was based on — 1 being a £th power residue (mod p7*!) and only
holds under the hypothesis that 4 divides £(p—1). The argument of the present subsection
(the possibility of which was suggested to me by Dr Erdés, through Professor Davenport)
applies without that hypothesis and is based on the existence of a set of values of x* whose sum
is congruent to 0 (mod p7*1). In fact the set of distinct values y,,...,y, where ¢ = (p—1)/d,
of x* (mod p7*!) form such a set, provided that ¢ > 1, for they are given by the roots of the

congruence y¥—1=0 (modp7*l), (3-3-1)
and the sum of the roots of this congruence is congruent to 0 (mod p7*1), i.e.
hite.+y=0 (modp™?)

when ¢ > 1. Since throughout this section we have taken p to be an odd prime such that
p—1 does not divide £, we necessarily have ¢ > 1. The results we obtain will be most
effective when ¢ is small.

Suppose we can find ¢ disjoint sets of coefficients, say

Ay vovy Qs Gppls wevs Gy eens Gpp iy weey Gy
such that their sums are all mutually congruent (mod p7*!). Then we can solve the con-
gruence (3-1-3) by taking

xf =y, (modp™1!) for r_,<i<r; (J=L,...,t)

(where 7y = 0) and x,=0 for >,
The possibility of finding ¢ such sets of coefficients is provided by a purely combinatorial
theorem of Erdés & Rado (1960, theorem III). We state this first in a self-contained form.

LemMA 3:-3-1. Let a and b be positive integers and let

c:b!ab“(l——1~—~~g——— b—1 )

2la 3T " BT (3-3-2)

Let X, ..., X, where ¢’ > ¢, be sets of at most b elements (the sets not necessarily being distinct).
Then there exist sets Yy, ..., Y., where a’ > a, such that

(i) each of the sets Y, is one of the sets X;, and the number of values of i for which Y, is the same set
does not exceed the number of values of j for which X;; is this set;
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(ii) for 1 <1 <j << d, the common part of Y; and Y; is a set Z which is the same for all ¢ and j.

In our application the sets Xj, ..., X, will in fact be distinct, so that (i) will simply say
that the sets Y/, ..., Y. are a selection from them, while (ii) states that there exist more than
a of the sets such that any two of them have the same common part (possibly null).

e . s .
Let 7 be a positive integer less than s. Consider the (r) sets of 7 of the coefficients ay, ..., a,,
the coeflicients in each set having distinct suffices. These sets are, of course, distinct, though
.. s .
not generally disjoint. Of these sets there must be at least p~ T“l(r) which have the same

sum (mod p7+1). We take these sets to be the sets X, ..., X,,, where

4 —-7-1 S)
c=p (r .
We also take b = r, the number of coeflicients in each set, and we take a = t—1.
Provided the equation of the lemma is satisfied, which will obviously be so if
1 b—1 )

/ | 4b+1 e s
¢ >bla (1 2Ta TR

the lemma asserts that there exist ¢ of the above sets such that the common part of any two

of these sets is the same. On removing this common part, we obtain ¢ disjoint sets of

coefficients, the sums of the coeflicients in all the sets being mutually congruent (mod p7*1).
We have therefore proved

LemmA 3:3-2. Suppose p is an odd prime and p—1 does not divide k. Let (k,p—1) = d and
t = (p—1)/d. Suppose that 1 < r < s and that

ol (;) > rl(t—1)71, (3:33)

Then the congruence a xf4...+a,xk =0 (modp7+l),

where a,, ..., a, are integers prime to p, has a primitive solution.

The inequality assumed in the enunciation is plainly sufficient for that required in the
previous lemma.

We can now deduce an estimate for y*(k, p7+1).

LemMA 3-3:3. If p is an odd prime and p7 (1=0) exactly divides k, and z"ftv= (p—1)/d>1,
where d = (k,p—1), then

Y*(hp7 ) < P, (3:3-4)
__[logp+it
where 7 = [jog4 ]—}—2.

Proof. The condition on s in the preceding lemma is satisfied if
(S—T+ l)r >ﬁ1+l(r!)2tr+l,

and is therefore satisfied if ~ s—r41 > tr24- 1AM (prrig)lir

since r! <

23-2
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7+1
We take r = h)_g_ﬁ_“jJ + 2, so that
log 4

(4p7+1t) 1/r < 4.

Hence the condition is satisfied if § = rit-tr,
whence the result.

We note that if ¢ is composite and ¢ = f; #,, ¢, > 1 and ¢, > 1, then the £th power residues

T7+1 1
(mod p7+1) satisty yie—1=0 (modp7*),
so that there exist £, kth power residues z,, ..., z, say, which satisfy
Z—1=0 (modp™!)

and hence which satisfy Zi4 ..z, =0 (modp™*!).

It is clear we can replace ¢ in §2-3 by ¢, and that we can choose ¢, < ¢*. Hence we get

y¥(k, pT1) < 02y 1 < 1Ay, (3-3-5)
7+1
where r = [I_(l%l’_ijl:l +2.
log 4

When 7> 0, p divides k and so ¢ = (p—1)/d < p < k, whence, provided ¢ is composite,
y¥(k,pm!) = O((logk)* £Y).

4. Tue ~NuMmBer ['*(%, p)
4-1. Introduction

We recall the definition of I'*(k,p) as the least positive integer s with the following
property: for any non-zero integers a,, ..., a, and any positive integer z, the congruence

a xf+...+axk=0 (modp) (4-1-1)

has a primitive solution, that is a solution with not all of x,, ..., x, divisible by the prime p.
This is equivalent to asserting that the equation

a X+ taxk =0

has a non-trivial solution in the field of p-adic integers, but as before we shall make no
real use of this concept.

The coeflicients ay, ..., a, are no longer restricted to being prime to p and so may contain
powers of p. By grouping them accordingly and introducing powers of p into the variables
if necessary, we can obtain from (4-1-1) an equivalent congruence of the form

F(O)—l—pF(l)+...—f—ﬁk—lF(k'l) =0 (modpn>’ (4.1.2)

where each F@ is an additive form in v; variables, with coefficients not divisible by p, and
where the variables in the different FU) are disjoint, so that vy+v;+...+v,_; =s. The
equivalence is such that the primitive solubility of (4-1-1) for all #, implies that of (4-1-2)
and vice versa.
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An operation which still remains available is that of permuting the forms F'?, ..., F&-D
cyclically. Using this, Davenport & Lewis (1963, lemma 3) showed thatitis possible to ensure
that in the equivalent congruence (4-1-2), the numbers of variables in F©, ..., F&-D satisfy

Vo = Sk, votv, = 25[k, .00+ U = 5. (4-1-3)

They then proceed to ensure that after this normalization, the congruence (4-1-2) has a
solution with not all of the v, variables in F© divisible by p. Any value of s for which this
solubility is proved always to hold, gives an upper bound for I'* (£, p), though it may possibly
fail to give the full truth.

In the same way as in §3-1, in order to estimate I'*(k, p) it suffices to prove that for a
certain value of s, the congruence

FOLpFO 4 4 ph-1F6-D =0  (mod p?) } (4-1-4)

is always soluble with at least one of the variables in F'? not divisible by p. For this value of s
we have I'*(k, p) < s. The normalization procedure enables us to estimate I'*(£, p) in terms
of the auxiliary functions y*(d,p) and y*(k,p”), which were discussed in the preceding
sections.

We note as a matter of interest that y is generally less than k. In this case some of the
original variables cease to play any part in (4-1-4) and this may be an imperfection of the
method.

4-2. The connexion between U'* (k, p) and y* (k, p?)

We give first a simple estimate for I'*(%, p) in terms of y*(%, p?). In the case when 7 = 0
and d = p—1 we are able to determine I'*(£, p) exactly.

LemmA 4-2-1. We have *(k,p) < k{y*(k,pv) —1}+1. (4-2-1)
Proof. Suppose the number of variables in (4-1-4) satisfies
§ = Ky* (k p) — 1}+1.

Then by the normalization conditions (4:1-3), we have v, > s/k, whence v, = y* (£, p7).
Hence, by the definition of y*(£, p7), we can solve the congruence

FO =0 (modp?)

with not all the v, variables in F© divisible by p. This provides a solution of (4-1-4) with not
all the variables in F© divisible by p, by taking all the other variables to be 0, whence the
result.

We note as a special case of this lemma that when the prime p does not divide & (i.e. when

7=0),
) D (5) < Ky*(d )~ 1} 1. (422)
We now treat another special case.

LemMA 4-2:2. If d = p—1 and 7 = 0, 50 that k = (p—1) ky, then

D#(k,p) = k(p—1)+1 = 1+k2/k,. (4-2-3)


http://rsta.royalsocietypublishing.org/

\

ya

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

L A

JA

yi

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

184 M. DODSON
Proof. We consider the cases p > 2 and p = 2 separately. First, the case p > 2. By (2:1:2)
and (2-1-4) we have Ve, p) = v*(p—1,p) = p.
Hence, by the preceding lemma,
D*(k,p) < k(p—1)+1 = 14Kk,

To prove the complementary inequality we must refer to the definition of I'*(£, p). It
suffices to exhibit a form in £(p— 1) variables such that the congruence (4-1-1) has only the
trivial solution for some n. Such a form is provided by

Z(O)+p2(l)_|_ L _}_ﬁk* 1Sk 1)’

where 2200 (j=0, ...,k—1) is a sum of p—1 kth powers (with coeflicients unity). Such a sum
is not congruent to 0 (mod p) unless each variable is divisible by p, so that if n > k—1, the
congruence (mod p*) has only the trivial solution.

Now we consider the case when p = 2. Since we are given 7 = 0, we have y = 742 = 2,
and hence that y*(k, p7) = y* (£, 4), and we also have that £ must be odd. Therefore we can
solve non-trivially the congruence

a,xf+a, x5 =0 (mod4),

where a, and «, are arbitrary odd integers. For plainly if ¢, = a, (mod 4), then x, = 1 and

%, = —1 1s a solution, while if @, == a, (mod 4), then @, +a, = 0 (mod 4) and x, = x, = lisa
solution. Hence by definition, y* (%, 4) < 2 and since clearly y*(k,4) > 1, we have
v*(k,4) = 2.

Thus the preceding lemma gives
[*(k,2) < k+1 = 14kk,,

since in this case £ = 20.1.k, = k.
To prove the complementary inequality for ['*(£,2), we again exhibit a form in £
variables such that the congruence (4-1-1) has, for some 7, only the trivial solution. Such a

form is given by IV R S

since ¥* =1 (mod 2) if x is odd and #* = 0 (mod 2) if x is even, so that if » > £—1, the
congruence (mod 27) has only the trivial solution. This completes the lemma.

4-3. The connexion between 1I'* (k,p) and y*(d, p)

Now we turn our attention to those finitely many primes p which divide £ (i.e. primes for
which 7 > 0).
Throughout this section we write

v=y*(d,p) (= v*(kp)), (4-31)
where 1 < d = (k,p—1) < p—1, so that the congruence
a, xf+...+a,xk=0 (modp),

where ay, ...,a, are arbitrary integers prime to p, always has a primitive solution, thatis a
solution with say x; == 0 (mod p). Also, we suppose that the prime p divides %, so that we
always suppose here that 7 > 0, since we have dealt with the case when p does not divide
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k in the previous subsection. The prime p is not restricted to being odd here, but we remark
that a better estimate for I'*(£, p) in the case p = 2, when v = d+ 1 = 2, is obtained in the
next subsection.

The argument is inductive and is a shghtly stronger form of a result of Davenport & Lewis
(1963, lemma 5). We start with a normalized form, F say, and we recall that

F = FO4pFO L 4 ph-1F6-1) (4:3-2)

where the F'0) are disjoint additive forms in v; variables with coefficients prime to p and
where the numbers of variables in the F) satisfy

vy = slk, votv, = 2slk, ..., v+ v =S

Following Davenport & Lewis, we define an operation of contraction which has the effect of
replacing a sum of v terms in the normalized form F by a single term, and here we make
use of the auxiliary function y*(d, p) (=v). The process of contraction will be used to replace
a set of v terms in some F® by a single term in some F®, where j > ¢. Consider a sum

a yi+...+a,yk. (4-3-3)

In what follows, one of the variables y,, ..., , is to be distinguished from the others and we
take this distinguished variable to be y,. By the definition of v, we can solve

oy +...+a,yf =0 (modp)

with g} prime to p. By choosing the solution suitably we can suppose the integer on the left
is not zero, and then we can write

a Y+ +a,yk = pe,
where ¢ is prime to p and g > 1. The substltutlon Y; = y; z glves us
ayf+...+a,yf = pEezt. (4:3-4)

The operation of contraction consists of replacing the terms (4:3-3) by the single term
peezk. We note that z == 0 (mod p) implies that y, == 0 (mod p).

Contractions are first applied to groups of v terms in #© and here any one of the variables
can be chosen to be distinguished. Any remaining variables not in the groups are put equal
to zero. There results a form POV PRGOS (4-3-5)

where GY contains the original v; terms plus possibly additional terms arising from the
contractions. These additional variables are called derived variables. We repeat this process,
ensuring at each stage that at least one of the variables in a group is derived either directly
or indirectly from a variable in F©. Suppose that after any number of permissible con-
tractions we reach a form H such that the congruence H = 0 (mod p?) is soluble with at
least one of the derived variables in H prime to p. This implies a solution of F' = 0 (mod p?)
and on tracing back the derived variables to their ancestors in F©, we see that the solution
has at least one of the variables in /@ prime to p. In particular, this will be the case if we

reach a form H = prnHe 4 pm 1 Honed g (4-3-6)
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in which any one of the forms H®, H¥+D, ... contains a derived variable; for then we can
take the derived variable to be 1 and the rest zero, and have the congruence H,, = 0 (mod p?)
soluble in the required way. We call this the soluble case.

We go on to prove a slightly strengthened form of lemma 5 in the paper of Davenport &
Lewis (1963).

LEMMA 4-3-1. For m = 1, ..., we can obtain from a normalized form F as given in (4-3-2) by
repeated contractions, a_form H,, of the type (4-3-6), where H™, H™*D, . are disjoint additive forms
with cogfficients prime to p. Forj < k— 1, HYD contains thev; terms of D possibly together with additional
derived variables; for j = k, HY) can contain only derived variables. Further, if S,, denotes the total
number of derived variables in H,,, then

1

m?
pm

: Yo Y Um—1
$,, = min (,jm——i’ ;};ﬁ-...—}-—;}— —1

(4-37)
where v = y*(d, p).

Proof. This is similar to Davenport & Lewis’s lemma 5 (1963), except that we show that
their induction goes through with the additional term 1/v™.

Suppose first m = 1. We divide the v, terms in F© into sets of v terms and equate surplus
terms in F© to zero. On contraction, each set gives a single term of the type (4-3-4), 1.c.
of the type psez”, where ¢ is prime to p and g > 1. If g < k—1, we add each such term to the
corresponding part p¢F® of F and denote the sum by p¢H®. Thus we obtain a form of the
type (4-3.6) with m = 1, and the total number of derived variables, §;, satisfies

v v, v—1 v 1
s=[3]=3-5 =0

and hence (4+3:7) holds when m = 1, the minimum being attained by the second expression.

We complete the proof by induction on m. We assume the lemma to be true for
m (1<m<y): we have to prove the lemma holds with m-1 replacing m. Let w denote the
number of derived variables in H®™; then the total number of derived variables in
Hm+b Hom2) | is S, —w. We divide the v,,+w terms in H®™ into the maximum number of
sets of v such that each set contains at least one of the w derived variables. The number of
such sets that can be formed is

w if v,=@wV—-1)w,
[?—m—:_—tg] if v, <(—1)w.

Any variables remaining in H®™ are put equal to zero. Each set of » terms can be contracted
into a single term, which will be of the form pfez*, where g = m+1 and ¢ is prime to p.
Adding each such term to the corresponding form /@, we obtain a form of the type

pm+1](m+l) +pm+21(m+2)_|_ oo

where each I contains the original v; variables from F0 for j < k— 1, plus possibly derived
variables already in H® and new derived variables. The total number of derived variables
in [on+D Jem+2) ) is S, ., and equals ’

w if v,>v—1)w,

S, —w)+
( ) [B”lelg] if v, <(@—1)w.
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Case I. Suppose v, = (v— ) w. Then §,,,, =S,,—w+w = §,,. If the minimum is attained

for the first expression in (4-3-7), then immediately

2 1

—1+

pm Vm+ 1

St =8> 14>

and S, satisfies the corresponding inequality with m+-1 replacing m. If the minimum is
attained by the second expression, we get

' v (. 1.
Spus1 :Sm>;—,%+...+—”;—‘—1+v—m

v g, L

ym pm+ 1

>

and again S, , satisfies the required inequality.
Case I1. Suppose v,, < (v—1) w. Then

Swin =Syt [ 22| 5 5w Uty

S+v

and since S,, > w, we get S = —1 + -

m+1 =

If the minimum is attained by the first expression in (4-3-7), then

Y 1 1
Smﬂ/ﬁ‘“?ﬂmﬂ* 1+—
h s =% 44 1
whence m+1 /;a“ +Vm-ll

and S, , satisfies (4-3-7) with m-+1 replacing m.
Finally, if the minimum is attained by the second expression, then

Vppey 1 1 v 1
Sm+1/Vm+l+ +—z;i_2‘——~+vm+l+b;_nvl+‘y’

12

and clearly (4-3-7) is again satisfied with m+ 1 replacing m. This completes the lemma.
As a consequence of this result we have

LEmMA 4-3-2. For all primes p, T* (k, p) satisfies

L—~ ] 11, (4-3-8)

l’l’llIl

[*(k,p) <
where v = y*(d, p).

Proof. Suppose the number of variables, s, in the congruence (4-1-4) satisfies

k(vr—1)
= min (v, y)

(4-3-9)

Then by the normalization conditions (4-1-3), we have v, > s/k and

%24 = vk

v v, _
e >
24 v

24 VoL. 261. A.
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. v S AY
it ) i )
1
>1-=,

from (4-3-9), and it follows that S, > 0. It follows from the definition of §,, that the
soluble case occurs if S, > 0, whence the lemma, from the definition of I'* (£, ).

4-4. Two estimates for I'*(k, p) when p—1 does not divide k

We apply this and previous results established for y*(d, p) to obtain estimates for ['* (£, p).
In our first application, using only lemma 2-3-2 which asserts that v = y*(d, p) < [1(d+4)]
if d<}(p—1) and lemma 2-2-1 which asserts that y*(d, p) = [(logp)/(log 2)]+1 when
d = }(p—1), we can deduce from the last lemma a simple and general estimate for I'* (£, p),
provided d < p—1. We note here that p is necessarily an odd prime.

LemmA 4-4-1. If d < p—1 and k = 7, we have
D*(k,p) < 3k2+k+1. (4-4-1)
Progf. We consider various cases.
(i) 7=0, 1<d<3. Here, by lemma 2-3-1, we have
vHkp) =7¥(dp) <d+1< 4,
so that by lemmas 4-2-1 or 4-3-2, we have

U*(k,p) < 8k+1 < Y2+E+1,

since we are given £ > 7.
(ii) 7=0,1<d<}(p—1). Here, by lemma 2-3-2, we have
r*(dp) < [3(d+4)],
so that, by either lemmas 4-2-1 or 4-3-2,

¥k, p) < 3(d+2) k41 < 324+-F4+1,
since d divides £.

(iii) 7=0,d=4(p—1), d > 4. In this case lemma 2-2-1 applies and we have

log p _ [log (2d—i—1 :l
*(d,p) = Tog 2 +1 +1 < §(d+4),

since d > 4. Thus it follows as in (ii) that
D*(k,p) < 3k2-+k+1.

This covers all the possible cases when p does not divide £. We now obtain an estimate for
I'* (%, p) when p divides £.

(iv) 7> 0,d = 1. Here y* (£, p) = 2, whence by lemma 4-3-2,
D*(k,p) < 3k(271—1)+1 =k2"—$k+1.
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Since k = p7 > 37, this implies that
F*(k)p) < k1+(19g 2)/(log D41 < %k2_|_ 1,
since kdog 2/og3) < Lk for k > 7.
(v) 7>0,d=20r 3 and d < 3(p—1). By lemma 2-3-2 we have y*(d, p) < 3, whence

I*(k,p) < {

Now 4k-+1 < $k2+£k-+1 when £ > 7, while in the remaining case, we have, since

4k+-1 if 7=1,
e(B™I—1)+1 if 7>2.

k>=dpT=>2.37,
I*(k,p) < 37k+1 < $£%41.
(vi) 7> 0,4 <d<}(p—1). Again by lemma 2-3-2 we have
Y*(d,p) < [3(d+4)],
whence by lemma 4-3-2, I*(k,p) < 3k{3(d+4)} 1 +1.

Now, since d = 4, plainly §(d+4) < d. Also, since d = (k,p—1), the inequality d < §(p—1)
implies that d < 4(p—1), so that
z(d+4) <s(p+11) <p,

since p > 3. It follows that, since £ > f"d, we have
I'*(k, p) < 3kprd+1 < $k2+1.
(vii) 7> 0, d = %(p—1). In this case lemma 3-2-1 applies and gives us

1)1 1 (2
4k, p7+1) < [<T+ Vogp, | _ [ogﬁlogaéﬂ ]+ _ [1og3k]+ ,

whence by lemma 4-2-1,

% (k, p) < k[lfogggk F1 < MR,

since k = 7

Except for the case d = p—1, which is excluded by hypothesis, we have covered all the
possible values that d and 7 can assume. We see that the greatest upper bound for I'* (£, p) is
1k*+k+ 1, which gives us the lemma.

In our second application we use the deeper but more complicated results of §2 to
obtain an estimate for I'*(£, p) when d < p—1, which is more effective when £ is large.

Lemva 4-4-2. If d<p—1 and k =1, then
I'* (&, p) <12 (logk)2k™. (4-4-2)
Proof. If 1 = 0, so that y = 1, it follows from lemmas 4-2-1 and 2-6:7 that
T*(k,p) < k{12(logd)2d*—1} 41
< 12(logk)2k*.
We have tacitly assumed 4 > 1 here, but if d = 1, then y* (%, p) = y*(1,p) = 2 and lemma

4.2.1 gives TRk p) < k1,
which plainly implies the result.

24-2
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If 7 =1 and p > 242, it follows from lemma 2-4-1 that
2log 2d 2logk
*
v*(k,p) < [ log 2 ]+1 < [10g2 ]+3 < 6logk.

Hence by lemma 4-3-2, with v < 6log#,

I*(k, p) < 3k(6logk)? < 12(log k)2 K,
since £ > 7.

If 7 =1 and p < 2d?%, we appeal first to lemma 3-3-3, which gives
vk, p?) < 1t

where 7 = [(log p?)/(log 4)]+2 and where ¢ = (p—1)/d. We note that p < 24? implies that
d> (1p)* > 1. Since ¢t < p/d < 2d < d*> and k = pd, we have

r< (2logk)/(log4)+2 < 3logk+2 < 3logk.
Also, since d > (1p)* and k = pd > 2p, we have
t< pld < (2p)F < K.
Hence y¥(k, p?) < 9(log )2k +3log k < 12(log k)2 A,
since k£ > 7. It follows from lemma 4-2-1 that
D*(k, p) < ky*(k, p?) —1}+1 < 12(log k)2 £
< 12(log k)2 k%,

If 7 > 2, we repeat in essence the last argument, but now p? divides £, so that we always
have L<p <k (4+4-3)
Again we have by lemma 3-3-3 that

yE(k, pTHY) < r2tr,
logp1t
log4

where now r = [

It follows from (4-4-3) and from the inequality £ = p7 that p71¢ < k% and hence that
r < (2logk)/(log4)+2 < 3logk.
Since ¢ < k*, we get the same conclusion as before, namely
*(k, p) < k{y*(k,p7+1) —1}+1 < 12(log k)2 &Y,

and this completes the lemma.

4-5. Another inductive argument
In lemmas 4-4-1 and 4-4-2 we have obtained estimates for I'*(%, p) when
d= (kﬁ’)“l) <p—1,

and we have also dealt with the case when d = p—1 and 7 = 0 in lemma 4-2-2. It remains to
consider the case d = p—1 when 7 > 0, and here we note that the case p = 2 is not excluded.
By (2-3-2) we have, whend = p—1,

Yo p) = y*(p—1:p) = -
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Thus lemma 4-3-2 gives in this case
D) < [mE oD+

We now develop a more elaborate inductive argument to show in effect that if p < y, the
term p in the minimum above can still be omitted. This more elaborate argument is based
on that of Davenport & Lewis’s lemma 7 (1963), which was concerned with the case p = 2
(when d = p—1 and p < y = 742 necessarily).

For those primes p satisfying p < y, we employ two processes of contraction analogous to
the ones used by Davenport & Lewis. We continue to use the type of contraction already
defined, in which one of the variables is distinguished and the choice of this variable is
restricted to being one of the variables in /O, or to having one of the variables in F©® among
its ancestors. The new variables arising from such contractions, previously called derived
variables, will now be called primary derived variables, or more simply, primary variables, since
we need to differentiate them from variables which result from a second type of contraction.

This second type of contraction depends on whether the prime p is odd or even. First,
when p is odd, it is as follows: suppose we have the expression

ey xf ... e, xf, (4:5°1)
where ¢, ..., ¢, are all in the same non-zero residue class (mod p). Then we put

Xy = .. =X, =2
and obtain the single term pezk, (4-5-2)

where ¢ and z are prime to p. This replacement of the expression (4-5-1) by (4:5:2) forms the
second type of contraction for odd primes and the source of the variables x,,...,x, is
immaterial. Secondly, when p = 2, the second type of contraction is as follows: suppose we
have the expression ) L
€y X1 6o X3, (45-3)
where ¢, and ¢, are odd and ¢, = ¢, (mod 4). Then we put &, = x, = z and obtained the
single term

8 22", (4-5-4)
where ¢ and z are odd. This replacement of the expression (4-5-3) by (4-5:4) forms the
second type of contraction when p = 2, and is applied regardless of the sources of the
variables x; and x,. In both cases the resulting variables are called secondary derived variables,
or more simply, secondary variables, and they will not necessarily have ancestors among the
variables in @ nor will they be available for use as primary derived variables.

As before, we start with a normalized form

F = F(O)—l—pF(I)—|— . _l_pk»lp(k—l)

and prove that by repeated contractions of these two types, we must reach the soluble case,
i.e. reach a form of the type (4:3-6), namely

Hm :pmH(m)+pm+lH(m+l)_l__“,
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in which there is at least one primary variable in some /7¢) with j = y. This implies, as before,
the existence of a solution of /= 0 (mod p”) with at least one of the variables in F©® not
divisible by p.

LEemMA 4-5-1. Suppose p is any prime such that p and p— 1 divide k, and that p < y. Suppose also that

s_pr—1 .
P> (4+55)

Then for m = 1,...,y, we can obtain from the normalized form F, by repeated contractions of both
kinds, a_form H,, of the type (4-3-6), where H, H™*V, . are additive forms in disjoint variables with
coefficients prime to p. For j < k—1, HD contains the v; terms of F9) and possibly additional terms con-
taining derived variables of both kinds; for j = k, the form HY can contain only derived variables.
Further, if S,, denotes the number of primary variables in H,,, then

S, > min (3’—0 Yo B Yoy +~—-) R 456
p>pop P P " ( )

and if V., denotes the number of original and secondary variables in H,,, then
StV = gl gy 1 (4-57)

T b 8
Proof. Here, by lemma 2:3-1, v = y*(k, p) = p, since by hypothesis d = p—1. The proof
of the lemma is by induction.
For m = 1 we proceed as in lemma 4-3-1, grouping the v, terms in F© into [v,/p] sums of
p terms and applying to each sum a contraction of the first type. The new variables are all
primary variables and their number is

Yo

— |20 _E,1H=ﬂ)_1 1
S=151=5 " =y

so that (4-5-6) holds for m = 1. Also, by definition, V} = v,, so that

S +V = [J l—l—p—l—vl,

whence (4-5-7) holds for m = 1 too.

We assume inductively that the statement of the lemma is true for m (1<m<y) and we
show it is true for m+1, and this will prove the lemma.

Let w denote the number of primary variables in ™; then the total number of primary
variables in Hmth) H™+2) is S, —w.

Case I. Suppose V,, < (p—1) w. We can thus form [(w-+V,,)/p] sets of p terms from H™,
each containing at least one primary variable and to each set we apply a contraction of the
first kind, obtaining [(w-+V,,)/p] new primary variables. Hence

Sm+1 = Sm_w_'-l:iu_%@] and Vm+l = Upt1s

there being no secondary variables formed. Hence

(p—Nw_ V, p—1
> 5, = tw T ]
Sm+l> m ‘ p +p p
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and since S,, > w by definition, S, , > S :ZV —1 + 7

and so by the inductive hypothesis (4-5-7), we have

1 1
Sm+1/pm+l+ ’I"pz ?)—'15 pmn +Z'

Thus (4-5-6) is satisfied for m+1. Also we haveV, ., = = Uprps whence

Sm+l+Vm+l /pm+1+ + +vﬂl+1 1+

p pm+ 1
and therefore (4-5-7) is also satisfied with m replaced by m+1.

Case II. Suppose V,,> (p—1)w, p> 2. Let X, (i=1,...,p—1) denote the number of
coefficients of the V,, original and secondary variables in H®™ which are congruent to

i (mod p). Then Ve=2X+..+X,_,.

We can select sets of p terms from these groups of coeflicients in the same residue class
(mod p) to make up any desired number of sets of secondary variables which does not exceed

[%]+...+[%f—1].

Suppose first that that w > p—1. Then we can form [{/,,— (p—1) w}/p] such sets, for

gl]+...+[£(£‘~‘] > iX—H—...4—)(1"‘1—(‘[’_[;1)2 >Vm”(";—l) “.

To each set we apply a contraction of the second type and obtain [{V,,— (p—1) w}/p] new
secondary variables. Hence

vV — —_
Vm+1 = vm+l+ [L"—T)—tg] .

There remain V,—p I:IZ’"—_:(—?):M:I > w(p—1)

terms in H®™. We combine (p—1) w of these with the w primary variables in H™), getting w
new primary variables in H, , , so that we have

S =8,—wt+w=_

Hence (4-5-6) is satisfied with m replaced by m+-1, since the right-hand side of (4-5-6)
decreases with increasing m. Also

V,— 1 ’
Sm+l+Vm+l /S +|: __’L— )w +v Um+1
S +V 1
= “+v U —1+-
b T
T - WL SR W
pm+1 [)2 p p pm+1 m+1 pa

by the inductive hypothesis (4-5-7) applied to S,,+V,,, and so (4:5:7) holds for m+1.
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Next, suppose w < p—1 andV,, = (p—1)2 Then

(bt [B] 5 g By T =

P2 2 2 2
Therefore we are able to select [{V,,— (p—1)2}/p] groups of secondary and original variables
which can sustain contractions of the second kind, giving [{/,,— (p—1)2}/p] new secondary
variables. The number of original and secondary variables remaining in H® after applying

these operations is Vo (p—1)2
ho=p [ = (g1 > (-1

Combining these (p—1) w original and secondary variables with the w primary variables in
H®™_ we obtain on applying contractions of the first type, w new primary derived variables.
As a result we have S

g =S8,—wtw==_,;

m

I A ]

Now suppose w < p—1, as before, and (p—1) w <V,, < (p—1)% Then we can form wsets
of p variables with each set containing one primary variable and p — 1 original and secondary
variables. We apply contractions of the first kind to these w sets, thus getting w new primary
variables, so that we have §,,,; = S, —w+w = §,,. We make no contractions of the second
type, so thatV,,,, =v,,.,. SinceV,, < (p—1)% by supposmon it is immediate that

—(p—1)*

Vm ™ U + Ty :l
+1 ™ + 1 +1 p

Henceifw <p—1andV,> (p—1)w
— —1)2
S =S, and V. =0+ [Vm_w(;w})u] _

It follows as before that the equation S,,,, = S,, implies that (4:5-6) holds with m+1 in
place of m. It remains to show that (4:5-7) is satisfied for m+-1 in place of m, and here we
must use the conditions that p <y =741 and s/k > (p7—1)/y. We have

Sm+1+ m+1 S +|: :|+vm+1
v ([a—l)2 1
> 8,2 =14+,
b F4 p
S +V 1
/,ﬂ__@_l_l___}_vm
p p +1

provided S, = (S,/p)+ (p—1)%/p, i.e. provided S, =p—1, for m =1,...,y—1. Hence,
provided §,, = p—1, we have by the inductive hypothesis (4:5:7) that

;—l_vm-ﬂ 1+

and we see that (4-5-7) also holds with m replaced by m-1.

Sm+1+Vm+1 /pm+1+ -+ pm+l’
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Now we show that$S,, > p—1 form=1,...,y—1. By the inductive hypothesis (4-5:6) we
haveform=1,...,y—1,

S, >m1n(v0 % vl U N 1)_1_|__

b’ o p "

Suppose the minimum is attained by the expression

Yo (o 1
4.+
r p’
where 1 < 7 << m. Then it suffices if
L EIE. S| > p—2.
yu4 p I’m

Now the left-hand side of this inequality is

> YoC te -1 1
r . +l”"
7(s/k) 1
>R 142 by (441-3),

= ;S,ik) 1 -|- 7 since p > 2,

> (r=1)s/k+1
!

(y=1) s/k+1
ot

Now by hypothesis, s/k > (p7—1)[y, so that it suffices to show

—1 sincem < y—1.

Hence it suffices to prove

> p—1.

—1
TS =141 > 1 (p-1).
Thus it is enough to show that yprI41 > pY
and since p < y by hypothesis, this inequality holds and hence the analogues of (4:5:6) and

(4-5-7) with m+1 instead of m, hold when p > 2.

Case I11. SupposeV,, > w, p = 2. Let X, denote the number of coeflicients of the V,, original
and secondary variables in H™ which are congruent to 1 (mod4), and let X, denote the
number congruent to 3 (mod 4). ThenV,, = X, 4+ X,. We can select pairs of terms from these
two groups of coefficients in the same residue class (mod 4) to construct atleast [3X,]+[3X,]
secondary variables.

First, suppose w > 0. Then we can select [}(V,,—w)] such pairs, for

[EVa—w)] = B +X—w)] < [3X]+[3X],
and by applying contractions of the second kind to them, obtain [4(V,,—w)] new secondary

variables. Hence Vo = tpey+ [V, —w)].

25 VoL. 261. A,


http://rsta.royalsocietypublishing.org/

I~
A 2

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

AL A

A \

J

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

196 M. DODSON
There remain V,—2[3V,—w)] > w

original and secondary variables in H™. We combine w of these with the w primary variables
in H™ and thus get w new primary variables in H, ,,, so that plainly

S, =8,—wt+w=>_,.
As before this implies that (4-5-6) is satisfied when m is replaced by m+-1. W ¢ also have
Spr1 Vo = S 12 (V=) [ 40,044
= 38 V) F U — 1414,

since S,, = w. Because the inductive hypothesis (4:5-7) holds for §,,+V,,, it follows exactly
as in the case p > 2 that (4-5-7) also holds when m is replaced by m+-1.
Next suppose w = 0 and V,, > 2. Then immediately

=,

m*

Sm-i-l

Also we have X+ [3X] = X +3X, -1 =1(V,—2) = 0.

Hence we are able to select at least 3(V,,— 2) pairs of secondary and original variables from
H®™ which can sustain contractions of the second type, giving us at least 4(V,,—2) new
secondary variables in H®*D, from which it follows that

Viir 2 vy +2(V,—2).
Finally, suppose that w = 0 and V,, = 1. Then it is again immediate that
Swi1 = S
and since we make no contractions of the second kind, plainly
Vi1 = Vi1 2 Uy +3(V,—2).

It follows as previously that the equation S,,,, = S,, implies that (4-5-6) is satisfied for m+1
in place of m. It remains to show that (4-5-7) also holds when mis replaced by m+1. We have

Sm+1+Vm+1 = Sm+%Vm_l+vm+l
= %(Sm+Vm)+vm+l—l+%a

provided S, > 1, in which case we have, as before, that (4:5-7) holds with m replaced by
m+1.

In order to show S, >1 for m=1,...,y—1, we must use the conditions 2 <y and
s/k > (2v—1)/y. By the inductive hypothesis (4-5-6), it suffices to prove

Y U1y b
o L > 0

forr = 1,...,m. In the same way as in the case p > 2, the conditions 2 < y and s/k > (27—1)/y
imply this inequality, and the proof is now complete.
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4-6. Upper and lower bounds for I'*(k, p) when p—1 divides k
As a consequence of the preceding lemma, we have

LemMA 4-6-1. If p is any prime and p—1 divides k, then
k(p
*(k,p) < [ :|+1 (4-6:1)

Proof. Since we are given that p—1 divides £, we have d = (k,p—1) = p—1, whence
y*(k, p) = p by (2-3-2). We note that the case p = 2 is automatically included here. '

If p = y, the result follows from lemma 4-3-2 (with v = p), so that we can suppose p < y.
Moreover, if p is prime to &, then by lemma 4-2-2, the statement of the lemma holds with
equality. Thus, without loss of generality, we assume that p < y and p divides £.

We have to prove that for these primes p, the congruence (4-1-1) has a primitive solution if

_Hpr=1)
4

bl

and for this it suffices if, in the notation of lemma 4-5-1, 5, > 0. Now by lemma 4-5-1, we have
by (4-5-6) with m =y, ‘

S >m1n(v0 % - )—l—l—".
V2 S TR S R
Suppose the minimum is attained for
v P

where 1 < 7 < y. The last expression is at least

Vot ...+, rs/k r(pv—1) _ pr—1
> = = )
r r Py P
since 7/p” does not increase for increasing integer values of 7 > 1 when p > 2. It follows that
S, > 0, whence the lemma.

As a complement to the preceding result, we now establish a lower bound for I'*(k, p).
We consider the cases p odd and p = 2 separately.

LemMa 4+6-2. If p is an odd prime such that p—1 divides k, then
I*(k,p) = [ky] (p7—1) + 1. (4:6-2)
Proof. Firstif p does not divide £, then 7 = 0 and y = 1 and lemma 4-2-2 applies, giving us
I*(k,p) = k(p—1)+1,

which plainly implies the result. It remains to prove the lemma when p divides £ and it
suffices, by the definition of I'* (£, p), to construct a form in [k/y] (p? — 1) variables such that
the congruence (4-1-1) has only the trivial solution for some z. Consider the form

Y =3O prIO 4 p2r T4+ PURIYI=Dy F kY11,

25-2
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where each 2@ (j=1,..., [k/y]—1) is a sum of p? —1 kth powers. Now for odd primes p, we
have y = 7+4+1 < p7 < k, whence if ¥ = 0 (mod p),

¥ =0 (modp?).
If x == 0 (mod p), then by Euler’s theorem,
xF = xpTp-Dko = 1 (modl)ﬂ-l),

since by hypothesis, £ is expressible as £ = p7(p—1) k,, where £ is prime to p.
It follows that no sum X% is congruent to 0 (mod $?) unless each variable is divisible by p,
so that if n > ([k/y]—1) y the congruence

2=0 (modp")

has only the trivial solution. This concludes the lemma.
We now consider the case p = 2.

LemMA 4-6-3. Suppose k is greater than 2. Then

(= [kly] (2r—1)+1 ifkis even, |
|=k+1 if k is odd. |

Proof. If k is odd, the result is simply lemma 4-2-2 with p = 2. If £ is even, then £ > 2 by
hypothesis, whence if x is even and k£ = 27k, where & is odd,

T (k, 2) (4-6-3)

¥F =x¥ =0 (mod27),
since y = 7+ 2. On the other hand if x is odd,
¥2=1 (modS8),
and it follows that 2" =1 (mod23+7-1),
whence | ¥F =520 =1 (mod27).
Consider the form 2 in [£/y] (2¥—1) variables given by
2= 2012y | A oMkyI-D Yy (Ak/yI- DA

where each 2 (j=1, ..., [k/y] —1) is a sum of 27 —1 kth powers. Since x* assumes only the
values 1 (for odd £) and 0 (for even £), no sum 2 is congruent to 0 (mod 27) unless each
variable is even. Hence if n > ([k/y] —1) 7, the congruence

2=0 (modp")

has only the trivial solution, whence the lemma, by the definition of ['*(£, 2).
We observe that if, in addition, y divides £, then the upper and lower bounds for I'* (£, p)
just given coincide and we have

LEMMA 4-6-4. Suppose p is any prime and suppose p—1 and y divide k. Then

TV (k, p) = ]fiﬁ;{_’i) +1. (4:6-4)


http://rsta.royalsocietypublishing.org/

/.
/ B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

HOMOGENEOUS ADDITIVE CONGRUENCES 199

Proof. If p is odd, the result plainly follows from lemmas 4-6-1 and 4:6-2. If p = 2 and £ is
even then it follows from lemmas 4+6:1 and 4-6-3. If p = 2 and £is odd, then y = 2 and hence
cannot divide £, and the lemma is proved.

Some of the results established for I'*(k, p) are set out in table 1.

TABLE 1
k T*(k, p)
p—1 k241
p(p—1) KA(1+1/p) +1
2(p-—1) k241

It will be seen that I'*(k, p) decreases as a function of £ as we go down the table. At
present, however the table cannot be continued, since when £ is expressible as £ = p(p—1)
for some odd prime p, I'* (£, p) cannot in general be evaluated exactly, and we know only that

3] (P —1)+1 < Tk, p) < [FR(P°— D] +1 = [3A2(0+p7 +p79)] 41,
by lemmas 4-6-1 and 4-6-2. To have equality here, we require £ to be divisible by 3.

It is possible to obtain a sharper result than that of lemma 4-6-2 when y does not divide £:
if p and p—1 divide £ and y does not divide £, then

T (k,p) > [kfy] (p7—1) +pt-im.

This is obtained by introducing p*~'/Y17 —1 more variables into the form 2 in lemma 4-6-2
as follows. Consider the form

3, = SO4prEO 4 4 pUI=DY Sy plkiyI v S

where 2’ is a sum of pF~t+71v —1 kth powers and the X are sums of p? —1 kth powers as
before. Since %’ assumes only the values 0,1, ..., p*~%/717 — 1 the congruence

2, =0 (modp")

has only the trivial solution for n > £—1.
This result is not used here but we note that when y does divide £, we get lemma 4-6-2.

5. THE NuMBER I'*(k)
5-1. Introduction
We are now in a position to establish our results for I'*(£). We recall the definition of
F*‘(k) as the least positive integer s with the following property: for any non-zero integers

a,, ..., a;, the congruence ¥+ ...+a, 2k =0 (modpn) (5-1-1)

has a primitive solution for every prime power p*. In §4 we investigated the solubility
of this congruence for any given prime p by means of the function I'*(£, p), which was
defined to be the least positive integer s such that for any non-zero integers 4, ..., a, and
every positive integer n, the congruence (5-1-1) has a primitive solution for the particular
prime p. As we saw in § 1, it is immediate that
I'* (k) = maximum I'* (£, p). (5-1-2)
(primes )

We use this formula to obtain our results for I'*(k).
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5:2. Some arithmetical results for I'* (k)
We recall that Davenport & Lewis (1963, theorem 1) have shown that for all £,
'*(k) < k?+1 (5:2-1)
and that there is equality here whenever £+ 1 is a prime. Also, Chowla & Shimura (1963,
theorem A) have proved that for all odd £ > £, (¢),
I'*(k) < (2/log 2+¢) klogk,

where ¢ is an arbitrary positive number. Here we obtain estimates for I'* (k) when £ is even
and k41 is not a prime, and we prove the result of Chowla & Shimura in a more explicit
form (without the ¢ as above), which is applicable for numerical values of £.

Our first result provides a simple upper bound for all £ for which £+1 is not a prime.

THEOREM 5-2-1. Suppose k+1 is composite. Then
*(k) < $3k%+1. (5-2:2)
Proof. The theorem is true for £ << 6 when £+1 is composite, since I'*(3) =7 and
I'*(5) = 16. For £ = 7, by virtue of (5-1-2) it suffices to show that if £+ 1 is composite, then
I*(k, p) < 62k*+1
for every prime p. We consider the various cases with £ > 7.

Case I. d = (k,p—1) < p—1. In this case lemma 4-4-1 applies and we have
[*(k,p) < IK24+-k+1 < £3K2+1,
since k > 7.

Case II. d =p—1. Here we consider primes p such that p—1 divides £, so that £ is
expressible as

k=p(p—1)ky (kpp) =1 (7=0). (52-3)
We note that the case p = 2 is necessarily included.

(i) 7 = 0. Here the conditions of lemma 4-2-2 are satisfied and we have
T*(k,p) = k(p—1)+1 = 1+ Kk, |
Plainly, I'*(k,2) = k41, and when p is odd, we must have k, > 2, since otherwise £+ 1
would be a prime. Hence in this case
D¥(hyp) < 321 < 3421
(ii) 7=1, p > 2. Here k can be expressed in the form
k=p(p—1 ko (kosp) =1,

and it follows from lemma 4-6:1 that
;2

LA Pe

p)+1 < $k%2+41,

for the least integer % of the form p(p—1) &, such that k41 is composite is 20 (p = 5).

T*(k,p) < Bh(p—1)+1 = g (1+
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(iii) 7= 2, p > 2. In this case £ is expressible in the form (5-2-3) except that now 7 > 2,
so that y > 3, and p > 3. It follows that

.z —(p— 1pt(p— 1
Applying lemma 4-6-1 again, we get
T (k, p) < ’i(ﬁfl) 1< Pl < 4%

It remains to consider the case p = 2 when £ is even.
(iv) 7> 0, p = 2. Once more lemma 4-6-1 gives
k(27+2—1)
* g A S D
r (k,2)\|: . ]+1, (52+4)
since y = 7+ 2 now. Also £ is of the form
k =27k, kyodd, 7>0.
First suppose k£, > 1. Then since 7 > 1 and £, > 2, we have

T* (, 2) <§(4—;-~ 1)+1<ggh1,

Next suppose k, = 1, i.e. k£ = 27, where 7> 3 by the hypothesis that £+1 is composite.
If 7 > 3, it follows from (5-2-4) that

T*(, 2) < ﬁ"_—Q (4h—1)+1 < Bh(4h—1)+1 < BR2+1 < 42k2.4 1

8 X
5

and when 7 = 3, we have I'*(8,2) < [ 31] +1=42+1.

We have now covered all the possible cases and thus have shown that if £+ 1 is composite,
then

I (k,p) < 484241

for all primes p. This establishes theorem 5-2-1.

We remark that we need to know more about I'*(8) in order either to establish that the
constant g3 is best possible or to improve on it. However, by excluding two particular
values of £, we get a sharp upper bound for I'* (k) in

THEOREM 5-2-2. Suppose k+ 1 is composite and k = 7. Then if the cases k = 8 and k = 32 are

excluded,
2

14/(1+4k)
and there 1s equality here when k = p(p— 1) for some odd prime p, in which case the inequality becomes

I (k) = T*(p(p—1)) = k(1 +1/p) + 1. (5-2-5)

T* (k) < 342 (1 + )+1, (5-2+40)
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Proof. We observe that in the preceding proof, with the exception of the case p = 2,
ky=1,7>0and thecase p > 2,d=p—1, 7= 1, we have

T*(k,p) < 4B+ 41

2
1
< (14 )+
fork>=1.
First, we consider the case p = 2, k, = 1, 7 > 0, i.e. the case when £ is a power of 2. By
lemma 4-6-1 we have A

& T+2
™k 2) < 5@ -1)+1

< th(4k—1)+1,
for by the hypotheses of the theorem we have excluded the cases £ = 2,4, 8,16 and 32. It

follows that T* (k, 2) < W2+ 1.
Now we deal with the case p > 2, d = p—1, 7 = 1. Here k is expressible in the form
k :p(p”l)ko’ (k()’p) = 1. (5'2‘6)

Since p—1 divides , k is even and so y (=2) divides k, whence lemma 4-6-4 gives

[*(kp) = 1k(1)2~1)+1
=§k—0(1+llﬁ)+1,

using the representation for £ given in (5-2-6). Hence, when £, > 2,
I*(k,p) < 2RI+ 1[p) +1 < 347+ 1,

since p > 3. Lastly, when k, = 1, i.e. when £ = p(p—1), we have
I*(k,p) = $R2(1+1/p) +1

2
— 172 - =
2k (1+1+J(1+4k)) b

In view of (5-1-2), this gives the theorem.
This theorem enables us to evaluate I'*(k) exactly when £41 is composite and £ is
expressible in the form £ = p(p—1) for some odd prime p. Thus we deduce that

[#(20) = 241, I'*(110) = 6601, ['*(272) = 39169.

When £ is odd, we have good estimates for I'* (£, p) for all primes p and this immediately
leads to a good estimate for I'*(k) in this case. We prove

TueoreM 5:2:3. If k is odd and k = "1, then
" 2log Zk] .
r (/s)gk[logQ +1. (5-27)

Proof. By (5-1-2) it suffices to prove that for odd £,

*(k, p) k[Qlong]+l

for every prime p.
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First, suppose p = 2. Then since £ is odd, we have by lemma 4-2-2 that
'*(k,2) =k+1.

Next suppose pis an odd prime. Then d = (k,p—1) divides 4(p—1). Suppose further that
p divides k. Then by lemma 3-2-1,

ylogﬁ] ylogﬁ]
kp)\[logQ +1 7log 2 +1

2logk
< [10g2]+ ,

since y = 7+1 and 7 > 1. Therefore lemma 4-2-1 gives

2log k7

kp)<k[

Finally, suppose p is prime to k. Then from lemma 2-2-1 we have

1
y*(d,p) = 7 (kp) < [ joog | +1.

Thus if p < 242, y¥(k, p) < 195@,4_ [2 log 2‘1] +1,
while if p > 242, then by lemma 2-4-1 we have
2log 2d
s
rrh) < | Pony” |1

whence, since d divides £, we have that when ? does not divide £,

2log 2k

(k) < log 2

Therefore by comparison with the estimates obtained above for I'* (%, p) for other primes p,
we get
%k, p) < kl:?long:l i

for all primes p, whence the theorem, by virtue of (5-1-2).

5-3. A lower bound for 1'* (k)
When £ is odd, we have by lemma 4-2-2 that

[*(k, 2) = k+1,

whence, by (5-1-2), *(k) = k+1
for all odd £.

When £ is even, £ is of the form £ = 27k, where £, is odd and 7 > 0, and we have, by
lemma 4-6-3,

k -T—

)(21+2 1)+ 1.

26 VoL. 261. A.


http://rsta.royalsocietypublishing.org/

am \
i &

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

/A N
B \

AL A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

204 M. DODSON
Now (k—7—1)(27+2—1)—k27 = (3.2"— 1) k— (7+1) 2724741
> (3.27—1) 21—(7'—'_1) 2T+2+7._|_1
>0
k27
* ———
for k£ > 6, whence I (£, 2) > 7—|—2+1’
>k+1

providing 7 > 2. When 7 = 1, lemma 4-6-3 again gives
I'*(k,2) = §(k—2) 7+1
>k+1

for k = 4. Thus if k is even, I'*(k) = £+ 1, since it is well known that I'*(2) = 5. Hence we
have provedT

THEOREM 5-3-1. For all k I'*(k) = k+1.
This lower bound may be capable of substantial improvement for all sufficiently large £
and in fact we conjecture that T (k)
lim === = 0
k>

However this seems a difficult problem and may be connected with the problem of a lower
bound for I'(k), about which little is known beyond 1'(k) > 8 for all £ > 1.

5-4. Some order results for 1I'* (k)
It is an immediate consequence of (5-2-1) that

I'* (k) < &2,
where < and > denote inequalities with unspecified positive constants. We now show
that for certain £, T* (k) > k2,
that is I'*(k) > ck?,
for some positive constant ¢ < 1.
THEOREM 5-4-1. Suppose k is expressible in the form
k=pr(p—1) ko,
where p is an odd prime, k, is not divisible by p and 7 = 0. Suppose further that v < 1 and ky < 1. Then
kr < I'*(k) < k2 (54-1)
Proof. By (5-2-1), I'*(k) < k?for all k. To prove I'* (k) > k% whenever £ is of the type given,
it is enough to show, by (5-1-2), that for the particular prime p,
I*(k,p) > F2.
Now we can suppose 7 > 0 without loss of generality, since otherwise, by lemma 4-2-2,

U*(k,p) = k(p—1)+1
= 1+R2Jk,
> k2.

1 This result can also be deduced from the fact that if p is a prime not dividing %, the congruence
xb+prk+... +pF 14 = 0 (mod p) does not have a primitive solution.
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Since p > 3 and 7 > 1, we have the inequality
(k=) (p7 1 =1) =kp"(p—1) Z p7(p—1) (p"=1) —7(p7' =1)
> (1=1p—(r+1)[p71) = 0,
and since by lemma 4-6-2
e = [T -0 = (B0 o4,
7+1 7+1
k2
~(r+1)
Therefore by the hypothesis on £, and 7 we have
(k. p) > #,

it follows that Php) > fyyg T

and this proves the theorem.

We note that we could replace the conditions on 7 and £, in the enunciation of the theorem
by the single condition (7+1) %k, < 1, but since 7 > 0 and £, > 1, it is clear that they are
equivalent.

We have shown in Theorem 5-2-3 that for odd £, I'*(£) = O(klog k). Now we show that
there are infinitely many even £ for which I'*(£) is of lower order than k2 More precisely,
we prove

THEOREM 5-4-2. There exists an infinity of even k such that
I'*(k) < 12(log k)2 k%,

Proof. Suppose p is a prime congruent to 1 (mod 3), and suppose ¢ is any prime greater
than 3. Then ¢—1 does not divide 2p; for suppose the contrary. Then we can write 2p as

= (g—1)m
where, since p is a prime, the only possible values for m are 1, 2, p or 2p. We consider these

four possibilities separately:

(i) m = 1. Since p = 1 (mod 3), there exists an integer a such that p = 3a+1, whence

g=2p+1=2(8a+1)+1 = 3(2a+1). |

It follows that 3 must divide ¢ which contradicts the choice of ¢.

(ii) m = 2. In this case p = ¢—1, which is impossible since p and ¢ are both primes > 3.

(iii) m = p. Here ¢ must be 3, which is a contradiction.

(iv) m = 2p. This case implies ¢ = 2 which again is a contradiction.

We take k£ = 2p, where p is a prime congruent to 1 (mod 8). Then, if ¢ is any prime > 3,
we have by lemma 4-4-2 that’ T*(k, g) < 12(log k)2 k¥,

since, by our choice of £, ¢—1 does not divide %.
Next we consider I'*(k, 3). In this case
d= (k,3—1) = (2p,2) =2 and 7=0.

Hence, by lemma 4-2-2, I'*(k,8) = 2k+1.
26-2
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Finally, we consider I'*(£, 2). Here 7 = 1 and y = 3, and lemma 4-6-1 gives us that
*(k,2) <1k(22°—1)+1 < 3k.
It follows from (5-1-2) that when £ = 2p, where p = 1 (mod 3) is a prime,
I*(k) < 12(logk)2k*.

Since by Dirichlet’s theorem on primes in arithmetic progression there are infinitely many
primes p = 1 (mod 3), the theorem is proved.

5:5. LEstimates for I'* (k) when k is large

It is possible to improve the estimate for I'*(k) given in theorem 5-2-2 at the cost of
further restricting £, and in fact we need in addition to £+ 1 being composite, to have £ not
expressible in the form £ = p(p—1), where p is an odd prime, and to have £ sufficiently large
as well. The necessity for the last condition arises from the arithmetical estimate for I'* (, p)
when p—1 does not divide £, given in lemma 4-4-1, no longer being strong enough and this
forces us to use the estimate of lemma 4-4-2.

THEOREM 5-5-1. If k 15 sufficiently large, then
| T* (k) < Lk2+1, (5:5:1)
unless k belongs to exther of the following special disjoint classes:
(1) k= p—1, p an odd prime, in which case
'*(k) = k2+1;
(II) k= p(p—1), p an odd prime and k is not a member of the class (1), in which case
T*(k) = BEX(14+1/p) +1.
Moreover, when k is sufficiently large and expressible in the form
k—2(p—1)
for some odd prime p, then we have equality in (5-5-1) and
'* (k) = $k2+1. (55-2)

Proof. If k is in either class (I) or class (II), then the theorem follows immediately by
(5-2-1) and theorem 5-2-2 respectively.

Suppose £ does not belong to either of the classes (I) or (II). Nowifd = (k,p—1) < p—1,
then by Lemma 4-4-2 we have

D*(k, p) < 12(logk)? k¥ < 3241

for £ sufficiently large. Thus in view of (5-1-2), we need only consider I'* (£, p) when p—1
divides £.
First, when p = 2, we express £ in the form

k =27k, koodd, 7> 0,
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and we have, by lemma 4-6-1, that
T*(k,2) < | 5 (272~ ]+1
4k?
1
NZODN
< 3k2+1

for £ > 32.
When p is odd and p—1 divides £, we express £ in the form

k=p7(p—1) ko (kpop) =1, 7=0.

In this case lemma 4-6-1 gives

p‘r+l___1
e e A

Now when £ does not belong to either of the classes (I) or (II), 7= 0 or 1 implies £, > 2,
and in the first of these two cases we have by lemma 4-2-2, that

T*(k, p) = K(p—1)+1 = L-+Rk, < 3241,

and we note that there is equality here when £, = 2. In the second case, lemma 4-6-4 holds
and we have i2

T*(k,p) = $h(p*—1)+1 = 5 (1 +1) F1 <3R4
0

p

If 7 > 2, then lemma 4-6-1 gives

I*(k,p) < (‘b;:—l)Jr < P;(ﬁf)-pf1+1<%k2+1.

Hence, when £ is not a member of either of the classes (I) or (II), we have by (5-1-2) that
I*(k) < 3241,

and as we noted above, there is equality here when £ = 2(p—1) for some odd prime p, by
lemma 4-2-2. This completes the theorem.

It is evident that this theorem does not provide a practical method for evaluating I'* (%),
since £ must be very large indeed (> 10'%) before lemma 4-4-2 becomes effective. If we
could improve either lemma 2-3-2 or lemma 2-6-7 sufficiently, we could prove this result for
numerical values of £. We conjecture that this theorem is true for all £, so that for instance
we conjecture that I'* (24) — 289.

It seems difficult to obtain any substantial improvement in the classification of those &
for which

o whie T (k) > ck?+1,

where ¢ is a constant less than 4. The reason for this is that at present, I'*(£, p), unlike the
analogous function I'(£,p) (Hardy & Littlewood 1928, lemma 7), cannot always be
evaluated exactly when p—1 divides £&. However we can extend theorem 5-5-1 in the
following way:


http://rsta.royalsocietypublishing.org/

A A

/

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

J

AL A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

208 M. DODSON

THEOREM 5:5:2. Let N be a posttive integer. Suppose k is not expressible in the form

. . = (p_l) kO: (koub) = 1:
with ky < N, nor in the form

=p7(p—1) ko, (kpp) =1, 7>0,
with (14+1) ky < 3N.
Then there exists a number ky(N) such that k > k,(N) implies
*(k) < 14-K%/N (5-5-3)
and there 1s equality here when k is expressible in the form

k= (p—1) N,
where p is a prime not dividing N.

Proof. This follows the same lines as for the preceding theorem. As before, providing
k> k{(N), we can disregard ['*(%,p) when p—1 does not divide £, and hence we need
only consider those primes p such that p—1 divides £. ‘

First, consider I'* (£, 2). Then, writing £ in the form £ = 27k, where £, is odd, we have
from lemma 5-6-1 that

P (k,2) < [

4k?
T+2 (

T+2__
2 :'—I—l < T—I—Q)k +1.
Now plainly (7+42) k, = 4N if k, > 2N, and if £, < 2N then
k= 27k, < 271N,

log (k/N)

whence (T4+2) kg > 741> “log2

= 4N,

providing £ is sufficiently large. Hence there exists a number £](N) such that k£ > £{(N)
implies T (k, 2) < 1--£2/N.
When p is an odd prime and p—1 divides £, we can express £ as
k=p7(p—1)kp, (kop) =1,

and in this case we have by lemma 4-6-1,

Do) < [0 41

By hypothesis if 7 = 0 then £, > N, whence, in this case, lemma 4:2:2 gives
[*(k, p) = 1+4+k%/ky < 1+Kk?/N,
and it is plain that if £ is expressible in the form

k=(p-1) N,
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where p is prime to W, there is equality here. If 7 > 0, then
kpT(p—1) 1—p~7"!
*
F (knb)< T+1 l_p—l +1
k3
S @Dk 2
< 1+44?%/N,

+1

since we are given that (7+1) £y > $N. The theorem follows on taking
, ky(N) = max {k; (N), ki (N)},
and using (5-1-2).
We can extend this theorem further to other types of .
THEOREM 5-5-3. Suppose k is not expressible in the form
F=pr(p—1)ky 730,
where p is an odd prime not dividing k,, with

Ib7+1_—!
7+1

Then there exists a positive number ky(A) such that k> k,(A) implies
I'*(k) < Ak+1,
and there is equality here if k can be expressed in the form
k=q7(g=1)kp, (kpq) =1, 72>0,

< A.

. q'r-l—l —1
where T+ 1 divides k, and A= =1
The proof is similar to that of the preceding theorems: we verify that for £ sufficiently
large T*(k,p) < dk+1,

and if £ is of the form given in the enunciation, then by lemma 4-6-4,
I'*(k, q) = Ak+1.

As an example, suppose £ is sufficiently large and expressible as ¢(¢—1) 2 for an odd
prime ¢. Suppose further that £ is not representable as p—1, p(p—1), p?(p—1), (p—1) 2 or
(p—1) 8 for any odd prime p. Then we deduce that

I*(k) = 3k(¢*=1) +1 = 12(1+ 1/g) +1.
We note that we have already dealt with the case when £ is representable as £ = p(p—1),
without the restriction that £ must be sufficiently large, in theorem 5-2-2, and we conjecture
that theorems 5-5-2 and 5-5-3 are also true without this restriction.

However, the question of the value of I'*(k) when £ is not of one of the types discussed
above is not settled by this method.

This paper formed part of a dissertation submitted for the Ph.D. degree at the University
of Cambridge, and I am deeply grateful to my supervisor Professor Davenport for suggesting
this problem and for his considerable help and advice.
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